Δευτέρα 20 Σεπτεμβρίου 2010

Η ΜΑΘΗΜΑΤΗΚΗ ΔΟΜΗ ΚΑΙ Η ΑΡΜΟΝΙΑ ΔΙΕΠΟΥΝ ΤΗΝ ΦΥΣΗ

ΤΑ ΜΑΘΗΜΑΤΙΚΑ Η ΑΡΜΟΝΙΑ ΚΑΙ Η ΣΥΜΜΕΤΡΙΑ ΔΙΕΠΟΥΝ ΤΗΝ ΦΥΣΗ

Σέ κάθε ματιά μας στην φύση και σε όλα τα δημιουργήματά της παρατηρούμε ότι εμπεριέχεται μια μυστηριώδης μαθηματική σταθερά οποία καθορίζει το σχήμα και την δομή με την οποία μορφοποιείται η ύλη. Η αυτό-οργάνωση δηλαδή της ύλης εκδηλώνεται με συγκεκριμένες φόρμες, τα σχήματα των οποίων υπακούουν σε αυστηρούς μαθηματικούς κανόνες και νόμους. Υπάρχει μία εκδήλωση αρμονικών σχέσεων οι οποίες είναι χαρακτηριστικές σε όλη την έκταση της οντολογικής κλίμακας από τον μικρόκοσμο ως το μεγάκοσμο. Επειδή το κεφάλαιο είναι τεράστιο, θα αναφερθώ σε ένα γοητευτικό μυστήριο που έχει απασχολήσει πολλούς ως τώρα. Γιατί η μέλισσα επιλέγει το εξαγωνικό σχήμα για να κατασκευάσει τις κηρήθρες και όχι ένα οποιοδήποτε άλλο κανονικό πολύγωνο. Έχουν δοθεί διάφορες απαντήσεις όπως «το εξάγωνο είναι πιο λειτουργικό», «το εξάγωνο είναι πιο σταθερό», «το εξάγωνο εξασφαλίζει περισσότερο χώρο», «το εξάγωνο τείνει προς τον κύκλο» κ.λ.π.. Στο ερώτημα αυτό θα δώσω μία πιο αυστηρή μαθηματική ερμηνεία. Από όλα τα κανονικά επίπεδα σχήματα, εκείνα που η μέλισσα θα μπορούσε να χρησιμοποιήσει για την κατασκευή των κελιών της, είναι τρία. Το ισόπλευρο τρίγωνο, το τετράγωνο και το κανονικό εξάγωνο. Μόνον αυτά τα τρία γεωμετρικά σχήματα «κλείνουν» ακριβώς το επίπεδο χωρίς να αφήνουν κενά μεταξύ τους.
Π.χ. τα πεντάγωνα , τα επτάγωνα, οκτάγωνα κλ.π δεν «κουμπώνουν» επακριβώς μεταξύ των. Αφήνουν ενδιάμεσο κενό χώρο.

(π.χ. Πενταγωνική και οκταγωνική διάταξη)


Γιατί όμως η μέλισσα επιλέγει το κανονικό εξάγωνο και όχι το ισόπλευρο τρίγωνο ή το τετράγωνο; Ιδού το ερώτημα! Γνωρίζουμε ότι η μέλισσα σε κάθε κελλί εναποθέτει την αυτή ποσότητα μελιού. Ας υποθέσουμε ότι το απαιτούμενο εμβαδόν για κάθε κελί είναι 1 τετραγωνική μονάδα. Αν κατασκεύαζε π.χ. τετραγωνικές κυψελίδες τότε αυτές θα είχαν πλευρά 1 μονάδα μήκους, οπότε 1 Χ 1=1 τετραγωνική μονάδα

Αν θα κατασκεύαζε ισόπλευρες τριγωνικές κυψελίδες, τι μήκος θα έπρεπε να έχει η κάθε πλευρά του ισοπλεύρου τριγώνου ώστε το εμβαδόν του να είναι ισοδύναμο με 1 τετραγωνική μονάδα;

Από τον τύπο υπολογισμού του εμβαδού (*) οποιουδήποτε κανονικού πολυγώνου επιλύουμε ως προς a και για εμβαδόν = 1 τετρ. μονάδα, βρίσκουμε ότι το τρίγωνο θα έπρεπε να έχει μήκος πλευράς ίσο με = 1,52 μονάδες μήκους.
Αν κατά τον ίδιο τρόπο υπολογίσουμε το μήκος της πλευράς του ισοδύναμου κανονικού εξαγώνου, βρίσκουμε ότι το μήκος της πλευρά του ισούται με 0,62 μονάδες μήκους.

Επομένως :
- στην περίπτωση της τριγωνικής κατασκευής η περίμετρος του τριγώνου ισούται με 3 Χ 1,52 = 4,56 μονάδες μήκους.

- στην περίπτωση κατά την οποία η μέλισσα θα κατασκεύαζε ορθογωνικά κελιά το καθένα θα είχε περίμετρο 4 Χ 1 = 4 μονάδες μήκους.

- στην περίπτωση της εξαγωνικής κατασκευής η περίμετρος του κάθε κελιού ισούται με 0,62 Χ 6 = 3,72 μονάδες μήκους.

ΣΥΜΠΕΡΑΣΜΑ

Παρατηρούμε ότι η επιλογή του εξαγωνικού σχήματος δεν είναι τυχαία. Αφενός μεν «κλείνει» επακριβώς το επίπεδο χωρίς κενά, αλλά είναι και το μοναδικό σχήμα με την μικρότερη περίμετρο. Δηλαδή η μέλισσα δαπανά λιγότερο κερί για την κατασκευή των κελιών της.

Και συνεχίζω με κάτι πιο εντυπωσιακό. Η πλευρά του εξαγώνου (=0,62) σε σχέση με την πλευρά του ισοδυνάμου τετραγώνου (=1) έχουν σχέση χρυσής τομής. Πράγματι ο λόγος 1 / 0,62 = 1,62 όπου 1,62 = φ. Ο νόμος της τέλειας αρμονίας σε όλο του το μεγαλείο. Η πλευρές δηλαδή του των ισοδυνάμων τετραγώνου και εξαγώνου σχηματίζουν το χρυσό ορθογώνιο στο οποίο ο λόγος των πλευρών ισούται με 1,62 ήτοι =φ.

Για τον αριθμό φ βεβαίως θα μπορούσαμε να αναπτύξουμε ολόκληρη πραγματεία αλλά δεν είναι επί του παρόντος. Αρκεί να αναφέρουμε ότι όλες οι αρμονικές σχέσεις στην φύση καθορίζονται από αυτόν το ιεροκρύφιο αριθμό. Οι αρχαίοι Έλληνες ήταν οι πρώτοι που τον είχαν προσδιορίσει μαθηματικώς και τον εφάρμοζαν σε κάθε καλλιτεχνική τους δημιουργία, γλυπτική αρχιτεκτονική, μουσική. (συμβολίζεται με το γράμμα της ελληνικής αλφαβήτου φ προς τιμή του Φειδία).
Και εύλογα διερωτάται κανείς! Ποιος έβαλε τις συγκεκριμένες γεωμετρικές πληροφορίες στα απειροελάχιστα εγκεφαλικά κύτταρα αυτού του ζουζουνιού;

Και όπως λέει το διαφημιστικό σλόγκαν «Τυχαίο;», Μόνον που εδώ δεν απαντάμε «Δεν νομίζω» αλλά «Βεβαίως όχι!!!». «Δεν είναι καθόλου τυχαίο!!!» Έχουμε μία αποκάλυψη του Λόγου ο οποίος καθόρισε ακριβείς μαθηματικούς νόμους για την λειτουργία ενός συστήματος. Τι είναι Λόγος; Ας ψάξει ο καθένας να τον βρει. Αρκεί να τον προσεγγίσει με σοβαρότητα και τον δέοντα σεβασμό.


Θωμάς Δασκάλου.